nautilus_core/time.rs
1// -------------------------------------------------------------------------------------------------
2// Copyright (C) 2015-2025 Posei Systems Pty Ltd. All rights reserved.
3// https://poseitrader.io
4//
5// Licensed under the GNU Lesser General Public License Version 3.0 (the "License");
6// You may not use this file except in compliance with the License.
7// You may obtain a copy of the License at https://www.gnu.org/licenses/lgpl-3.0.en.html
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14// -------------------------------------------------------------------------------------------------
15
16//! The core `AtomicTime` for real-time and static clocks.
17//!
18//! This module provides an atomic time abstraction that supports both real-time and static
19//! clocks. It ensures thread-safe operations and monotonic time retrieval with nanosecond precision.
20//!
21//! # Modes
22//!
23//! - **Real-time mode:** The clock continuously syncs with system wall-clock time (via
24//! [`SystemTime::now()`]). To ensure strict monotonic increments across multiple threads,
25//! the internal updates use an atomic compare-and-exchange loop (`time_since_epoch`).
26//! While this guarantees that every new timestamp is at least one nanosecond greater than the
27//! last, it may introduce higher contention if many threads call it heavily.
28//!
29//! - **Static mode:** The clock is manually controlled via [`AtomicTime::set_time`] or [`AtomicTime::increment_time`],
30//! which can be useful for simulations or backtesting. You can switch modes at runtime using
31//! [`AtomicTime::make_realtime`] or [`AtomicTime::make_static`]. In **static mode**, we use
32//! acquire/release semantics so that updates from one thread can be observed by another;
33//! however, we do not enforce strict global ordering for manual updates. If you need strong,
34//! multi-threaded ordering in **static mode**, you must coordinate higher-level synchronization yourself.
35
36use std::{
37 ops::Deref,
38 sync::{
39 OnceLock,
40 atomic::{AtomicBool, AtomicU64, Ordering},
41 },
42 time::{Duration, SystemTime, UNIX_EPOCH},
43};
44
45use crate::{
46 UnixNanos,
47 datetime::{NANOSECONDS_IN_MICROSECOND, NANOSECONDS_IN_MILLISECOND, NANOSECONDS_IN_SECOND},
48};
49
50/// Global atomic time in **real-time mode** for use across the system.
51///
52/// This clock operates in **real-time mode**, synchronizing with the system clock.
53/// It provides globally unique, strictly increasing timestamps across threads.
54pub static ATOMIC_CLOCK_REALTIME: OnceLock<AtomicTime> = OnceLock::new();
55
56/// Global atomic time in **static mode** for use across the system.
57///
58/// This clock operates in **static mode**, where the time value can be set or incremented
59/// manually. Useful for backtesting or simulated time control.
60pub static ATOMIC_CLOCK_STATIC: OnceLock<AtomicTime> = OnceLock::new();
61
62/// Returns a static reference to the global atomic clock in **real-time mode**.
63///
64/// This clock uses [`AtomicTime::time_since_epoch`] under the hood, ensuring strictly increasing
65/// timestamps across threads.
66pub fn get_atomic_clock_realtime() -> &'static AtomicTime {
67 ATOMIC_CLOCK_REALTIME.get_or_init(AtomicTime::default)
68}
69
70/// Returns a static reference to the global atomic clock in **static mode**.
71///
72/// This clock allows manual time control via [`AtomicTime::set_time`] or [`AtomicTime::increment_time`],
73/// and does not automatically sync with system time.
74pub fn get_atomic_clock_static() -> &'static AtomicTime {
75 ATOMIC_CLOCK_STATIC.get_or_init(|| AtomicTime::new(false, UnixNanos::default()))
76}
77
78/// Returns the duration since the UNIX epoch based on [`SystemTime::now()`].
79///
80/// # Panics
81///
82/// Panics if the system time is set before the UNIX epoch.
83#[inline(always)]
84#[must_use]
85pub fn duration_since_unix_epoch() -> Duration {
86 SystemTime::now()
87 .duration_since(UNIX_EPOCH)
88 .expect("Error calling `SystemTime`")
89}
90
91/// Returns the current UNIX time in nanoseconds, based on [`SystemTime::now()`].
92///
93/// # Panics
94///
95/// Panics if the duration in nanoseconds exceeds `u64::MAX`.
96#[inline(always)]
97#[must_use]
98pub fn nanos_since_unix_epoch() -> u64 {
99 let ns = duration_since_unix_epoch().as_nanos();
100 assert!(
101 (ns <= u128::from(u64::MAX)),
102 "System time overflow: value exceeds u64::MAX nanoseconds"
103 );
104 ns as u64
105}
106
107/// Represents an atomic timekeeping structure.
108///
109/// [`AtomicTime`] can act as a real-time clock or static clock based on its mode.
110/// It uses an [`AtomicU64`] to atomically update the value using only immutable
111/// references.
112///
113/// The `realtime` flag indicates which mode the clock is currently in.
114/// For concurrency, this struct uses atomic operations with appropriate memory orderings:
115/// - **Acquire/Release** for reading/writing in **static mode**,
116/// - **Compare-and-exchange (`AcqRel`)** in real-time mode to guarantee monotonic increments.
117#[repr(C)]
118#[derive(Debug)]
119pub struct AtomicTime {
120 /// Indicates whether the clock is operating in **real-time mode** (`true`) or **static mode** (`false`)
121 pub realtime: AtomicBool,
122 /// The last recorded time (in UNIX nanoseconds). Updated atomically with compare-and-exchange
123 /// in **real-time mode**, or simple store/fetch in **static mode**.
124 pub timestamp_ns: AtomicU64,
125}
126
127impl Deref for AtomicTime {
128 type Target = AtomicU64;
129
130 fn deref(&self) -> &Self::Target {
131 &self.timestamp_ns
132 }
133}
134
135impl Default for AtomicTime {
136 /// Creates a new default [`AtomicTime`] instance in **real-time mode**, starting at the current system time.
137 fn default() -> Self {
138 Self::new(true, UnixNanos::default())
139 }
140}
141
142impl AtomicTime {
143 /// Creates a new [`AtomicTime`] instance.
144 ///
145 /// - If `realtime` is `true`, the provided `time` is used only as an initial placeholder
146 /// and will quickly be overridden by calls to [`AtomicTime::time_since_epoch`].
147 /// - If `realtime` is `false`, this clock starts in **static mode**, with the given `time`
148 /// as its current value.
149 #[must_use]
150 pub fn new(realtime: bool, time: UnixNanos) -> Self {
151 Self {
152 realtime: AtomicBool::new(realtime),
153 timestamp_ns: AtomicU64::new(time.into()),
154 }
155 }
156
157 /// Returns the current time in nanoseconds, based on the clock’s mode.
158 ///
159 /// - In **real-time mode**, calls [`AtomicTime::time_since_epoch`], ensuring strictly increasing
160 /// timestamps across threads, using `AcqRel` semantics for the underlying atomic.
161 /// - In **static mode**, reads the stored time using [`Ordering::Acquire`]. Updates by other
162 /// threads using [`AtomicTime::set_time`] or [`AtomicTime::increment_time`] (Release/AcqRel)
163 /// will be visible here.
164 #[must_use]
165 pub fn get_time_ns(&self) -> UnixNanos {
166 if self.realtime.load(Ordering::Acquire) {
167 self.time_since_epoch()
168 } else {
169 UnixNanos::from(self.timestamp_ns.load(Ordering::Acquire))
170 }
171 }
172
173 /// Returns the current time as microseconds.
174 #[must_use]
175 pub fn get_time_us(&self) -> u64 {
176 self.get_time_ns().as_u64() / NANOSECONDS_IN_MICROSECOND
177 }
178
179 /// Returns the current time as milliseconds.
180 #[must_use]
181 pub fn get_time_ms(&self) -> u64 {
182 self.get_time_ns().as_u64() / NANOSECONDS_IN_MILLISECOND
183 }
184
185 /// Returns the current time as seconds.
186 #[must_use]
187 #[allow(clippy::cast_precision_loss)]
188 pub fn get_time(&self) -> f64 {
189 self.get_time_ns().as_f64() / (NANOSECONDS_IN_SECOND as f64)
190 }
191
192 /// Manually sets a new time for the clock (only meaningful in **static mode**).
193 ///
194 /// This uses an atomic store with [`Ordering::Release`], so any thread reading with
195 /// [`Ordering::Acquire`] will see the updated time. This does *not* enforce a total ordering
196 /// among all threads, but is enough to ensure that once a thread sees this update, it also
197 /// sees all writes made before this call in the writing thread.
198 ///
199 /// Typically used in single-threaded scenarios or coordinated concurrency in **static mode**,
200 /// since there’s no global ordering across threads.
201 ///
202 /// # Panics
203 ///
204 /// Panics if invoked when in real-time mode.
205 pub fn set_time(&self, time: UnixNanos) {
206 assert!(
207 !self.realtime.load(Ordering::Acquire),
208 "Cannot set time while clock is in realtime mode"
209 );
210
211 self.store(time.into(), Ordering::Release);
212 }
213
214 /// Increments the current (static-mode) time by `delta` nanoseconds and returns the updated value.
215 ///
216 /// Internally this uses `fetch_add` with [`Ordering::AcqRel`] to ensure the increment is
217 /// atomic and visible to readers using `Acquire` loads.
218 ///
219 /// # Panics
220 ///
221 /// Panics if called while the clock is in real-time mode.
222 pub fn increment_time(&self, delta: u64) -> UnixNanos {
223 assert!(
224 !self.realtime.load(Ordering::Acquire),
225 "Cannot increment time while clock is in realtime mode"
226 );
227
228 let prev = self.fetch_add(delta, Ordering::AcqRel);
229 UnixNanos::from(prev + delta)
230 }
231
232 /// Retrieves and updates the current “real-time” clock, returning a strictly increasing
233 /// timestamp based on system time.
234 ///
235 /// Internally:
236 /// - We fetch `now` from [`SystemTime::now()`].
237 /// - We do an atomic compare-and-exchange (using [`Ordering::AcqRel`]) to ensure the stored
238 /// timestamp is never less than the last timestamp.
239 ///
240 /// This ensures:
241 /// 1. **Monotonic increments**: The returned timestamp is strictly greater than the previous
242 /// one (by at least 1 nanosecond).
243 /// 2. **No backward jumps**: If the OS time moves backward, we ignore that shift to preserve
244 /// monotonicity.
245 /// 3. **Visibility**: In a multi-threaded environment, other threads see the updated value
246 /// once this compare-and-exchange completes.
247 ///
248 /// Note that under heavy contention (many threads calling this in tight loops), the CAS loop
249 /// may increase latency. If you need extremely high-frequency, concurrent updates, consider
250 /// using a more specialized approach or relaxing some ordering requirements.
251 ///
252 /// # Panics
253 ///
254 /// Panics if the internal counter has reached `u64::MAX`, which would indicate the process has
255 /// been running for longer than the representable range (~584 years) *or* the clock was
256 /// manually corrupted.
257 pub fn time_since_epoch(&self) -> UnixNanos {
258 // This method guarantees strict consistency but may incur a performance cost under
259 // high contention due to retries in the `compare_exchange` loop.
260 let now = nanos_since_unix_epoch();
261 loop {
262 // Acquire to observe the latest stored value
263 let last = self.load(Ordering::Acquire);
264 // Ensure we never wrap past u64::MAX – treat that as a fatal error
265 let incremented = last
266 .checked_add(1)
267 .expect("AtomicTime overflow: reached u64::MAX");
268 let next = now.max(incremented);
269 // AcqRel on success ensures this new value is published,
270 // Acquire on failure reloads if we lost a CAS race.
271 if self
272 .compare_exchange(last, next, Ordering::AcqRel, Ordering::Acquire)
273 .is_ok()
274 {
275 return UnixNanos::from(next);
276 }
277 }
278 }
279
280 /// Switches the clock to **real-time mode** (`realtime = true`).
281 ///
282 /// Uses [`Ordering::SeqCst`] for the mode store, which ensures a global ordering for the
283 /// mode switch if other threads also do `SeqCst` loads/stores of `realtime`.
284 /// Typically, switching modes is done infrequently, so the performance impact of `SeqCst`
285 /// here is acceptable.
286 pub fn make_realtime(&self) {
287 self.realtime.store(true, Ordering::SeqCst);
288 }
289
290 /// Switches the clock to **static mode** (`realtime = false`).
291 ///
292 /// Uses [`Ordering::SeqCst`] for the mode store, which ensures a global ordering for the
293 /// mode switch if other threads also do `SeqCst` loads/stores of `realtime`.
294 pub fn make_static(&self) {
295 self.realtime.store(false, Ordering::SeqCst);
296 }
297}
298
299////////////////////////////////////////////////////////////////////////////////
300// Tests
301////////////////////////////////////////////////////////////////////////////////
302#[cfg(test)]
303mod tests {
304 use std::sync::Arc;
305
306 use rstest::*;
307
308 use super::*;
309
310 #[rstest]
311 fn test_global_clocks_initialization() {
312 let realtime_clock = get_atomic_clock_realtime();
313 assert!(realtime_clock.get_time_ns().as_u64() > 0);
314
315 let static_clock = get_atomic_clock_static();
316 static_clock.set_time(UnixNanos::from(500_000_000)); // 500 ms
317 assert_eq!(static_clock.get_time_ns().as_u64(), 500_000_000);
318 }
319
320 #[rstest]
321 fn test_mode_switching() {
322 let time = AtomicTime::new(true, UnixNanos::default());
323
324 // Verify real-time mode
325 let realtime_ns = time.get_time_ns();
326 assert!(realtime_ns.as_u64() > 0);
327
328 // Switch to static mode
329 time.make_static();
330 time.set_time(UnixNanos::from(1_000_000_000)); // 1 second
331 let static_ns = time.get_time_ns();
332 assert_eq!(static_ns.as_u64(), 1_000_000_000);
333
334 // Switch back to real-time mode
335 time.make_realtime();
336 let new_realtime_ns = time.get_time_ns();
337 assert!(new_realtime_ns.as_u64() > static_ns.as_u64());
338 }
339
340 #[rstest]
341 #[should_panic(expected = "Cannot set time while clock is in realtime mode")]
342 fn test_set_time_panics_in_realtime_mode() {
343 let clock = AtomicTime::new(true, UnixNanos::default());
344 clock.set_time(UnixNanos::from(123));
345 }
346
347 #[rstest]
348 #[should_panic(expected = "Cannot increment time while clock is in realtime mode")]
349 fn test_increment_time_panics_in_realtime_mode() {
350 let clock = AtomicTime::new(true, UnixNanos::default());
351 let _ = clock.increment_time(1);
352 }
353
354 #[rstest]
355 #[should_panic(expected = "AtomicTime overflow")]
356 fn test_time_since_epoch_overflow_panics() {
357 use std::sync::atomic::{AtomicBool, AtomicU64};
358
359 // Manually construct a clock with the counter already at u64::MAX
360 let clock = AtomicTime {
361 realtime: AtomicBool::new(true),
362 timestamp_ns: AtomicU64::new(u64::MAX),
363 };
364
365 // This call will attempt to add 1 and must panic
366 let _ = clock.time_since_epoch();
367 }
368
369 #[rstest]
370 fn test_mode_switching_concurrent() {
371 let clock = Arc::new(AtomicTime::new(true, UnixNanos::default()));
372 let num_threads = 4;
373 let iterations = 10000;
374 let mut handles = Vec::with_capacity(num_threads);
375
376 for _ in 0..num_threads {
377 let clock_clone = Arc::clone(&clock);
378 let handle = std::thread::spawn(move || {
379 for i in 0..iterations {
380 if i % 2 == 0 {
381 clock_clone.make_static();
382 } else {
383 clock_clone.make_realtime();
384 }
385 // Retrieve the time; we’re not asserting a particular value here,
386 // but at least we’re exercising the mode switch logic under concurrency.
387 let _ = clock_clone.get_time_ns();
388 }
389 });
390 handles.push(handle);
391 }
392
393 for handle in handles {
394 handle.join().unwrap();
395 }
396 }
397
398 #[rstest]
399 fn test_static_time_is_stable() {
400 // Create a clock in static mode with an initial value
401 let clock = AtomicTime::new(false, UnixNanos::from(42));
402 let time1 = clock.get_time_ns();
403
404 // Sleep a bit to give the system time to change, if the clock were using real-time
405 std::thread::sleep(std::time::Duration::from_millis(10));
406 let time2 = clock.get_time_ns();
407
408 // In static mode, the value should remain unchanged
409 assert_eq!(time1, time2);
410 }
411
412 #[rstest]
413 fn test_increment_time() {
414 // Start in static mode
415 let time = AtomicTime::new(false, UnixNanos::from(0));
416
417 let updated_time = time.increment_time(500);
418 assert_eq!(updated_time.as_u64(), 500);
419
420 let updated_time = time.increment_time(1_000);
421 assert_eq!(updated_time.as_u64(), 1_500);
422 }
423
424 #[rstest]
425 #[allow(clippy::cast_possible_truncation, clippy::cast_possible_wrap)]
426 fn test_nanos_since_unix_epoch_vs_system_time() {
427 let unix_nanos = nanos_since_unix_epoch();
428 let system_ns = duration_since_unix_epoch().as_nanos() as u64;
429 assert!((unix_nanos as i64 - system_ns as i64).abs() < NANOSECONDS_IN_SECOND as i64);
430 }
431
432 #[rstest]
433 fn test_time_since_epoch_monotonicity() {
434 let clock = get_atomic_clock_realtime();
435 let mut previous = clock.time_since_epoch();
436 for _ in 0..1_000_000 {
437 let current = clock.time_since_epoch();
438 assert!(current > previous);
439 previous = current;
440 }
441 }
442
443 #[rstest]
444 fn test_time_since_epoch_strictly_increasing_concurrent() {
445 let time = Arc::new(AtomicTime::new(true, UnixNanos::default()));
446 let num_threads = 4;
447 let iterations = 100_000;
448 let mut handles = Vec::with_capacity(num_threads);
449
450 for thread_id in 0..num_threads {
451 let time_clone = Arc::clone(&time);
452
453 let handle = std::thread::spawn(move || {
454 let mut previous = time_clone.time_since_epoch().as_u64();
455
456 for i in 0..iterations {
457 let current = time_clone.time_since_epoch().as_u64();
458 assert!(
459 current > previous,
460 "Thread {thread_id}: iteration {i}: time did not increase: previous={previous}, current={current}",
461 );
462 previous = current;
463 }
464 });
465
466 handles.push(handle);
467 }
468
469 for handle in handles {
470 handle.join().unwrap();
471 }
472 }
473
474 #[rstest]
475 fn test_duration_since_unix_epoch() {
476 let time = AtomicTime::new(true, UnixNanos::default());
477 let duration = Duration::from_nanos(time.get_time_ns().into());
478 let now = SystemTime::now();
479
480 // Check if the duration is close to the actual difference between now and UNIX_EPOCH
481 let delta = now
482 .duration_since(UNIX_EPOCH)
483 .unwrap()
484 .checked_sub(duration);
485 assert!(delta.unwrap_or_default() < Duration::from_millis(100));
486
487 // Check if the duration is greater than a certain value (assuming the test is run after that point)
488 assert!(duration > Duration::from_secs(1_650_000_000));
489 }
490
491 #[rstest]
492 fn test_unix_timestamp_is_monotonic_increasing() {
493 let time = AtomicTime::new(true, UnixNanos::default());
494 let result1 = time.get_time();
495 let result2 = time.get_time();
496 let result3 = time.get_time();
497 let result4 = time.get_time();
498 let result5 = time.get_time();
499
500 assert!(result2 >= result1);
501 assert!(result3 >= result2);
502 assert!(result4 >= result3);
503 assert!(result5 >= result4);
504 assert!(result1 > 1_650_000_000.0);
505 }
506
507 #[rstest]
508 fn test_unix_timestamp_ms_is_monotonic_increasing() {
509 let time = AtomicTime::new(true, UnixNanos::default());
510 let result1 = time.get_time_ms();
511 let result2 = time.get_time_ms();
512 let result3 = time.get_time_ms();
513 let result4 = time.get_time_ms();
514 let result5 = time.get_time_ms();
515
516 assert!(result2 >= result1);
517 assert!(result3 >= result2);
518 assert!(result4 >= result3);
519 assert!(result5 >= result4);
520 assert!(result1 >= 1_650_000_000_000);
521 }
522
523 #[rstest]
524 fn test_unix_timestamp_us_is_monotonic_increasing() {
525 let time = AtomicTime::new(true, UnixNanos::default());
526 let result1 = time.get_time_us();
527 let result2 = time.get_time_us();
528 let result3 = time.get_time_us();
529 let result4 = time.get_time_us();
530 let result5 = time.get_time_us();
531
532 assert!(result2 >= result1);
533 assert!(result3 >= result2);
534 assert!(result4 >= result3);
535 assert!(result5 >= result4);
536 assert!(result1 > 1_650_000_000_000_000);
537 }
538
539 #[rstest]
540 fn test_unix_timestamp_ns_is_monotonic_increasing() {
541 let time = AtomicTime::new(true, UnixNanos::default());
542 let result1 = time.get_time_ns();
543 let result2 = time.get_time_ns();
544 let result3 = time.get_time_ns();
545 let result4 = time.get_time_ns();
546 let result5 = time.get_time_ns();
547
548 assert!(result2 >= result1);
549 assert!(result3 >= result2);
550 assert!(result4 >= result3);
551 assert!(result5 >= result4);
552 assert!(result1.as_u64() > 1_650_000_000_000_000_000);
553 }
554}